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Abstract 

Several wavefront sensing techniques provide direct or indirect measurements of the 
wavefront error gradient, for example the Shack–Hartmann sensor, the Foucault knife-
edge test, shearing interferometry, and many others. We developed and tested a 
noniterative method to reconstruct the wavefront error from its gradient. The method is 
based on the projection of the measured gradients onto a basis derived from multiple 
directional derivatives that have been combined into an intermediate set of orthogonal 
functions. To reduce errors that arise from linear approximations, the intermediate 
functions can be calculated with parameters that match the known experimental 
conditions. This method can be implemented using any convenient set of smooth 
polynomials defined on a two-dimensional domain, and it is not computationally 
intensive. In this paper we describe the method in detail, provide an example of a 
possible implementation, and discuss the effect that random noise in the measured 
gradient has on the reconstruction. 

1. Introduction 

Several wavefront detection techniques are based on measurements of the wavefront 
gradient, relying on reconstruction algorithms to calculate the actual wavefront. This is 
the case for the lateral shearing interferometer [1], the Hartmann and Shack–Hartmann 
sensors [2], the pyramid sensor [3], and the quantitative knife-edge test [4]. All these 
methods provide a direct or indirect measurement of the wavefront gradient and require 
a reconstruction algorithm to recover the original wavefront. In some cases, like the 
Hartmann and Shack–Hartmann tests, measurements represent a discretely sampled 
version of the continuous wavefront derivative, while in shearing interferometry, 
measurement points may be quasi-continuous, but the underlying mechanism 
compares physically shifted copies of the original wavefront. Analysis in the shearing 
case is often performed using a linear approximation of the local derivatives, potentially 
missing higher-order information. Most deterministic wavefront reconstruction 
algorithms can be classified as modal or zonal methods. Zonal algorithms [4–6] 
minimize reconstruction errors locally, limiting error propagation but making them more 
susceptible to noise [7]. Modal algorithms fit measurement data to global shape 
functions, such as orthogonal polynomials, and are commonly based on Zernike or 
Fourier polynomials [8–12]. Fitting globally provides reduced susceptibility to noise and 
random errors and can deliver results that are inherently connected to physical 
parameters (i.e., alignment degrees of freedom) or aberration terms (defocus, 
astigmatism, coma, etc.) We developed a modal, noise-robust algorithm that can be 
used with any set of independent two-dimensional (2D) polynomials to reconstruct a 
wavefront from its gradient on arbitrary pupil shapes. The reconstruction is obtained by 
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projecting the measured wavefront derivatives onto an orthonormal basis derived from 
the empirically calculated derivatives of the chosen polynomial set. In this method, 
orthogonal derivatives (e.g., ∇x and ∇y) are grouped together in pairs, forming a single 
element, reminiscent of a domino tile. In a conventional way, projection coefficients are 
used to calculate the original wavefront by means of a transformation matrix that maps 
the derivatives back to the original polynomials. One advantage of this approach is that 
it does not require specific assumptions or approximations of the wavefront derivatives 
but can be used with the same kind of difference functions (discrete or continuous) 
generated by the wavefront sensing method. It therefore becomes adaptable to the 
specific details of the measurement, including the native coordinate grid of the detector 
array. In the case of shearing interferometry, for example, one would use a polynomial 
derivative basis generated with the same discrete shear displacement used physically in 
the wavefront measurement. This approach avoids the potential pitfalls of point-by-point 
linear approximation of the derivatives, ensuring higher accuracy in the reconstruction. 

2. Description of the Method 

The first step is to choose a suitable set of 2D orthogonal polynomials that can 
effectively represent the wavefront error that we want to reconstruct. Let us consider a 
2D measurement domain R and a basis set of orthogonal polynomials {Zn}. Let W be 
the wavefront error to reconstruct and an the coefficients of the expansion of W on the 
polynomial basis {Zn}, so that  

The measured gradient of W is expressed as the two orthogonal components (Sx,Sy):  

The two orthogonal directions x and y are taken to be parallel to the derivatives. Here, 

the derivative itself may be either continuous or discrete, calculated to match the 

physical details of the measurement. For example, in the case of shearing 

interferometry, the interfering wavefronts may have an inherent shear distance that 

could be equal to some number of pixels in the discrete measurement domain. In that 

case, the discrete derivatives should be calculated from the difference between 

displaced versions of W, with a displacement matching the shear distance. From the 

original basis, we create a new basis of paired difference functions to decompose the 

measured derivatives: where j>0. In this definition, each element of this basis is 

comprised of two matrices matching the size of Sx and Sy (see Fig. 1). Note that in 

many basis definitions the first term, Z0, is constant and both of its directional 

derivatives are zero, so the series description can skip the 0th element without loss of 

generality. To make the projection onto the new basis, we first orthogonalize and 

normalize our basis using a modified Gram–Schmidt (MGS) procedure [13], obtaining a 

new set of elements (D^x,D^y). Note that, in practice, if the wavefront is defined over a 

domain R, the derivatives are often calculated over smaller regions Rx and Ry, and the 

wavefront reconstruction can be performed only on R2, the intersection of Rx and Ry. 

Now we can project the paired measured wavefront-error gradient onto the new basis, 

summing over the combined domain, R2:  
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Fig. 1. Top row shows eight Zernike annular polynomials (excluding the piston term). With the outer radius 

normalized to 1, the inner radius is 0.2. (Note that the choice of this particular basis set is arbitrary.) Below each term, 
its derivatives Dy and Dx are shown. The polynomial set Zj and the derivative set (Dx,Dy)j have been both 
orthogonalized and scaled for display between −1 and 1. 

The coefficients {mj} define a linear combination of the polynomial gradient basis terms 
that approximates the measured wavefront-error gradient. The approximation is due to 
the fact that in any practical implementation of the method, the gradient basis has a 
finite number N of elements:  

The last step is to remap the coefficients {mj} into the corresponding polynomial 

coefficients from the basis used in Eq. (1). The elements of the transformation matrix 

arise from the Gram–Schmidt orthonormalization calculation. Alternately, we can find 

them by projecting the derivatives of the Z polynomials onto the orthonormal basis, 

obtaining a matrix of coefficients Pn,j that satisfies for each element in the set of the Z 

polynomials gradients. Inverting the matrix P enables us to express the elements of the 

orthonormal basis in terms of the original derivatives (Dx,Dy)j:  

Now, combining Eqs. (1–3), we have a series representation of the gradient on the 
basis of the derivatives of Z:  

Substituting Eqs. (5) and (7) into Eq. (8), we find  

and the expression for the fitting coefficients on Z that produce the reconstructed 

wavefront, W:  

3. Practical Implementation 

To summarize, the necessary steps for a correct implementation of this reconstruction 
algorithm are as follows:  

 1. Select a finite set of 2D polynomials that are expected to accurately describe 
the measured wavefront error on an appropriate pixel grid corresponding to the 
measurement domain. 
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 2. Numerically calculate the derivatives of the polynomials with an algorithm that 
models the physical measurement procedure. 

 3. Trim the edges of the domain to remove edge artifacts, if necessary. In some 
cases, like in shearing interferometry, the derivatives are calculated on a 
subdomain of the original pupil, and the reconstructed wavefront is defined on 
the intersection of the subdomains of the two derivatives (see Fig. 2). 

 4. Group the orthogonal derivatives from Steps 2 and 3 into pairs (Dx,Dy), 
creating new basis functions (D^x,D^y) that represent both derivatives in one 
array. 

 5. From those paired polynomial derivatives, create a new basis of orthonormal 
“derivatives” using an MGS procedure to facilitate accurate fitting. 

 6. Calculate the transformation matrix, P, between the paired derivatives and the 
corresponding orthogonalized elements. The elements of P may arise from the 
MGS procedure, or they can be calculated from the projection of each derivative 
pair onto the new, orthonormalized basis. 

 7. Project the experimentally measured derivatives onto the orthonormalized 
basis to find the coefficients {mj}. 

 8. Calculate the coefficients of the reconstructed wavefront {mj} using Eq. (10). 
 9. The reconstruction accuracy can be evaluated by comparing the calculated 

gradients of the reconstructed wavefront to the measured derivatives (Sx,Sy) 
used as input. 

 

Fig. 2. In shearing interferometry the wavefront derivatives are calculated on a domain R2 defined by the intersection 

of the sheared pupil. Without additional information, the wavefront can be reconstructed only over the intersection 
domain of the two derivatives. 

4. Demonstration 

To demonstrate the capabilities of the algorithm, we reconstructed a wavefront 
generated using a random combination of the first 32 Zernike annular polynomials on a 
domain of 256×256 pixels. In Fig. 1 we show a nine-element subset of the polynomial 
basis we used for the reconstruction and the corresponding subset of the derivative 
basis. In this case the derivatives have been calculated as the finite-difference function 
that would arise from a shearing interferogram with a shear magnitude of 2 pixels. Note 
that the domain of the wavefront derivatives is not strictly annular, as shown in Fig. 2. 
The reconstruction algorithm will generate a wavefront that can be extended to the full 
size of the chosen polynomials, but the validity of the reconstruction is limited to the 
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domain of the derivatives. In the absence of noise, we compared the reconstructed 
wavefront and the original one over the derivatives’ domain, and we found that the 
residual difference is a floating point round-off error with a magnitude of 10−13 waves 
peak-to-valley, as shown in Fig. 3. In any practical implementation of the method, when 
we do not have the original wavefront available a priori for comparison, the best way to 
test the quality of the reconstruction is to differentiate the reconstructed wavefront and 
compare the calculated derivatives with the measured ones, as shown in Fig. 4. Once 
again, it is essential to calculate the derivatives using the same method employed in the 
computation of the derivatives’ basis. 

 

Fig. 3. Example of a wavefront obtained as a random combination of the first 32 Zernike annular polynomials and its 

reconstruction in the absence of noise. The peak-to-valley value is two waves. The difference between the original 
and the reconstructed wavefront is limited by floating point round-off error to an order of magnitude of 10−13 waves, 
peak-to-valley. 

 

Fig. 4. Comparison between the derivatives of the wavefront shown in Fig. 3 and the derivatives calculated from the 

reconstruction. The peak-to-valley of the value across the domain is 0.2  waves/pixel. The difference between the 
original and the reconstructed derivatives is limited by floating point round-off error, with an order of magnitude of 
10−14 waves/pixel, peak-to-valley. 

5. Reconstruction Errors 

In principle, the reconstruction algorithm we presented reproduces the original 
wavefront over the R2 domain, with the exception of the piston term that is not present 
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in the measured difference data. In practice, the accuracy of the reconstruction is limited 
by the finite number of polynomials used and by their characteristics. Ideally, best 
results are achieved when using a polynomial basis whose elements accurately 
describe the aberrations that are expected to be present in the optical system under 
investigation [14]. This of course requires some insight about the wavefront error that is 
being reconstructed, including the presence of high-spatial-frequency features or 
imperfections in the elements under test. To show how the choice of the basis can 
affect the reconstruction, we generated a random wavefront error using the first 24 
Chebyshev polynomials restricted to a circular domain, we calculated its discrete 
gradient to simulate measurement, and then we reconstructed it using different sets of 
Chebyshev and Zernike polynomials. When the reconstruction is performed with the 
same polynomials used to generate the wavefront, the reconstruction converges quickly 
as the number of polynomials reaches 24 and produces the correct, original wavefront. 
Not surprisingly, when a different polynomial basis is used, the reconstruction requires a 
much larger number of terms to obtain a good reconstruction, as shown in Fig. 5. In this 
specific case, this behavior depends on the fact that each Chebyshev polynomial 
expresses spatial frequencies with x or y periodicity while Zernike polynomials express 
radial and angular frequencies. 

 

Fig. 5. We generated 200 random wavefronts using the first 24 Chebyshev polynomials, calculated their gradient, 

and reconstructed them using Zernike polynomial bases and Chebyshev polynomial bases with increasing size. The 
plot shows the average reconstruction error for the two polynomial types. Using Zernike polynomials, it takes a much 
larger basis to obtain an accurate reconstruction. 

The wavefront reconstruction accuracy can be affected by random and systematic 
errors in the measured derivatives. Such errors propagate to the reconstructed 
wavefront and limit the accuracy of the final result. For example, the way photon shot 
noise affects the wavefront reconstruction depends on how the measured data is 
processed to obtain the wavefront derivatives. We will show here how Gaussian noise 
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present in the (measured) wavefront derivatives influences the quality of the 
reconstruction. We simulated a random, circular wavefront on a 64×64 pixel domain, 
using the first 32 Zernike polynomials. We calculated its discrete derivatives to simulate 
measurement and added different levels of Gaussian noise to them to test the 
reconstruction. The RMS wavefront reconstruction error, E, was calculated by 
subtracting the computed wavefront from the known, input wavefront and normalizing 
the resultant RMS to that of the input wavefront:  

To get a statistically meaningful estimate of E, we repeated this procedure for 1000 

random wavefronts and averaged the results. Figure 6 shows that with a signal-to-noise 

ratio higher than 5 we can expect a normalized RMS reconstruction error E below 0.04. 

Here the signal-to-noise ratio is defined as the ratio of the signal mean and the standard 

deviation of the Gaussian noise. Systematic errors are another common occurrence in 

the wavefront reconstruction. In many cases, such errors are specific to the method 

used to obtain the derivatives. In shearing interferometry, for instance, one source of 

error comes from imperfect knowledge of the shear fraction, defined as the ratio 

between the shear size and the wavefront diameter. To quantify the role of this kind of 

error, we generated a random wavefront and calculated its discrete derivatives with a 

fixed shear fraction. Then we performed the reconstruction assuming a range of shear 

fraction values above and below the known value. Figure 7 shows the calculated error E 

as a function of the assumed shear fraction values. At the correct shear fraction value, 

the error is zero, as expected. The results of this test demonstrate that uncertainty in the 

shear fraction can lead to significant errors in the reconstructed wavefront. However, in 

the majority of cases, the shear fraction s can be measured directly from the CCD 

camera image as where r is the radius of the interfering beams and q is their 

displacement. In these cases the uncertainty on the shearing fraction is determined by 

the image sampling [15] and can be calculated as  
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Fig. 6. Plot shows the value of E averaged over 1000 randomly generated wavefronts as a function of the signal to 

noise ratio in the measured derivatives. The value of E was calculated using wavefronts obtained by the random 
combination of the first 32 Zernike polynomials. The error bars in the plot represent a 2σ confidence interval. 

 

Fig. 7. Plot shows the value of E averaged over 100 wavefronts obtained as a random combination of the first 32 

Zernike polynomials. We calculated the derivatives, shearing the wavefront with a shear fraction of 0.0625, and 
reconstructed the wavefront assuming a shearing fraction from 0.0225 to 0.1025. 

6. Computational Performance 

The method does not rely on any iterative procedure and is therefore both fast and 
deterministic. In particular, in the case of repeated measurements over the same 



domain, Steps 1 to 5 of the reconstruction procedure (building the basis and 
orthonormalizing it) need only to be performed only once, and each wavefront can be 
reconstructed with a simple projection and a matrix operation (Steps 6 and 7). The 
method is also capable of handling big wavefront maps without making use of large 
amounts of memory [6]. We measured the reconstruction time on a 2.6 GHz processor 
in Matlab. We performed the reconstruction of random wavefronts with bases of 
different sizes and element numbers. Figure 8 shows how the reconstruction time 
scales quadratically with the number of elements in the basis and with the wavefront 
sampling. The performance of the algorithm is in line with other similar reconstruction 
methods [16], and it can be improved by using a more powerful processor or a parallel 
computing architecture. 

 

Fig. 8. Wavefront reconstruction computation time for wavefront maps with different sampling as a function of the 

number of elements in the polynomial basis. For a wavefront with 32×32 samples and a basis of 10 polynomials, we 
measured a reconstruction time of 2 ms. This time grew to 32 ms as the number of samples increased to 256×256 
with the same number of basis terms. 

7. Conclusion 

We developed a method for the reconstruction of a wavefront error from its gradient. 
The method is deterministic and is based on the projection of the measured gradient 
onto an orthonormal basis of polynomials derived from the gradient of a specific 
polynomial set. To reconstruct the wavefront, we map this decomposition back onto the 
chosen polynomial basis. This method can be applied with any set of orthogonal 
polynomials. This reconstruction technique is based on the direct projection of the data 
on an orthonormal basis; therefore it works correctly regardless of the number of terms 
used to generate the test wavefront error and the number of terms considered in the 
reconstruction. In other words it is possible to calculate separately the contribution to 
the wavefront error of any element of the chosen basis. The number of polynomials that 
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should be used in the reconstruction depends on the accuracy needed in the 
reconstructed wavefront. We tested the speed of the reconstruction algorithms for 
different wavefront sampling and polynomial basis sizes, and we found that it is in line 
with other modal reconstruction methods [16]. The reconstruction time scales 
quadratically with the size of the basis and the wavefront sampling. We evaluated the 
performance of this method in the presence of Gaussian noise and with shear-
magnitude uncertainty. Simulations show that the effect of uncorrelated Gaussian noise 
in the two components of the measured gradient has limited effect on the reconstruction 
accuracy. In particular, we found that as long as the signal-to-noise ratio is higher than 5 
we can expect less than 4% error in the reconstructed wavefront. The systematic error 
induced by a shear-magnitude error can be significant: a shearing fraction error of 0.01 
can lead to a wavefront RMS reconstruction error E of 0.1. We believe that the main 
advantage of this method is that it can be applied quite generally, without relying on 
approximations to the wavefront differences obtained with any technique or relying on 
the properties of particular polynomial sets. In this the proposed approach is different 
from other modal reconstruction techniques like the difference Zernike polynomials 
fitting method [10,17,18]. This makes this method both flexible and reliable. 
Furthermore, the quality of the result can be directly evaluated by comparing the 
measured derivatives to those calculated from the reconstructed wavefront. 
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